量子傅里叶变换(QFT)
离散傅里叶变换(DFT)
对于N点序列\(\{x[n]\},0\leq n<N\),其DFT为:\(\hat{x}[k]=\sum_{n=0}^{N-1}e^{-i\frac{2\pi}{N}nk}x[n],k=0,1,\ldots,N-1\),记为\(\hat{x}=\mathcal{F}\{x\}\),其逆DFT为:\(x[n]=\frac{1}{N}\sum_{k=0}^{N-1}e^{i\frac{2\pi}{N}nk}\hat{x}[k],n=0,1,\ldots,N-1\),记为\(x=\mathcal{F}^{-1}\{\hat{x}\}\)。
将DFT和逆DFT两个式子的两边分别乘\(\sqrt{N}\),得\((\sqrt{N}\hat{x}[k])=\sum_{n=0}^{N-1}e^{-i\frac{2\pi}{N}nk}(\sqrt{N}x[n]),k=0,1,\ldots,N-1\)与\((\sqrt{N}x[n])=\frac{1}{N}\sum_{k=0}^{N-1}e^{i\frac{2\pi}{N}nk}(\sqrt{N}\hat{x}[k]),n=0,1,\ldots,N-1\)。
整理可得:\(\hat{x}[k]=\frac{1}{\sqrt{N}}\sum_{n=0}^{N-1}e^{-i\frac{2\pi}{N}nk}(\sqrt{N}x[n]),k=0,1,\ldots,N-1\)与\((\sqrt{N}x[n])=\frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{i\frac{2\pi}{N}nk}\hat{x}[k],n=0,1,\ldots,N-1\)。
换元可得:逆DFT:\(x_{k}=\frac{1}{\sqrt{N}}\sum_{j=0}^{N-1}y_{j}e^{-2\pi ijk/N}\)与DFT:\(y_{k}=\frac{1}{\sqrt{N}}\sum_{j=0}^{N-1}x_{j}e^{2\pi ijk/N}\),其中\(k=0,1,\ldots,N-1\)。
量子傅里叶变换(QFT)
即用量子线路实现DFT:\(\hat{f}(k)=\frac{1}{\sqrt{N}}\sum_{j=0}^{N-1}f(j)e^{2\pi ijk/N},\, k=0,1,\ldots,N-1\)。
用量子态表示DFT为:\(|\hat{\psi}\rangle=\mathcal{F}(|\psi\rangle),\, |\hat{\psi}\rangle=\sum_{k=0}^{2^{n}-1}\hat{f}(k)|k\rangle,\, |\psi\rangle=\sum_{j=0}^{2^{n}-1}f(j)|j\rangle,\, 2^{n}=N\)。
若\(\mathcal{F}(|j\rangle)=\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ijk/2^{n}}|k\rangle\),则
\[ \begin{equation} \begin{aligned} |\hat{\psi}\rangle & = \mathcal{F}(|\psi\rangle) \\ & =\sum_{j=0}^{2^{n}-1}f(j)\mathcal{F}(|j\rangle) \\ &=\frac{1}{\sqrt{2^{n}}}\sum_{j=0}^{2^{n-1}}f(j)\sum_{k=0}^{2^{n}-1}\exp(2\pi ijk/2^{n})|k\rangle \\ & =\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}(\sum_{j=0}^{2^{n}-1}\exp(2\pi ijk/2^{n})f(j)) |k\rangle \\ & =\sum_{k=0}^{2^{n}-1}\hat{f}(k)|k\rangle \end{aligned} \end{equation} \]
所以QFT为:\(\mathcal{F}(|j\rangle)=\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ijk/2^{n}}|k\rangle\)。
QFT的张量积形式
首先定义\(j\)的二进制表示,\(j=j_{n-1}j_{n-2}\ldots j_{0}=j_{n-1}2^{n-1}+j_{n-2}2^{n-2}+\ldots+j_{0}2^{0}\),对于小数来说,\(0.j_{l}j_{l+1}\ldots j_{m}=\frac{1}{2}j_{l}+\frac{1}{2^{2}}j_{l+1}+\ldots +\frac{1}{2^{m-l+1}}j_{m}\)。
\[ \begin{equation} \begin{aligned} \mathcal{F}(|j\rangle) & =\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ijk/2^{n}}|k\rangle \\ & =\frac{1}{\sqrt{2^{n}}}\sum_{k_{n-1}=0}^{1}\ldots\sum_{k_{0}=0}^{1}\exp(2\pi ij\sum_{l=1}^{n}\frac{k_{n-l}}{2^{l}})|k_{n-1}\ldots k_{0}\rangle \\ & =\frac{1}{\sqrt{2^{n}}}\sum_{k_{n-1}=0}^{1}\ldots\sum_{k_{0}=0}^{1}\otimes_{l=1}^{n}\exp(2\pi ij\frac{k_{n-l}}{2^{l}})|k_{n-l}\rangle \\ & =\frac{1}{\sqrt{2^{n}}}\otimes_{l=1}^{n}[\sum_{k_{n-l}=0}^{1}\exp(2\pi ij\frac{k_{n-l}}{2^{l}})|k_{n-l}\rangle] \\ & =\frac{1}{\sqrt{2^{n}}}\otimes_{l=1}^{n}[|0\rangle+\exp(2\pi ij\frac{1}{2^{l}})|1\rangle] \\ & =\frac{1}{\sqrt{2^{n}}}(|0\rangle+e^{2\pi i0.j_{0}}|1\rangle)\otimes(|0\rangle+e^{2\pi i0.j_{1}j_{0}}|1\rangle)\otimes\ldots\otimes(|0\rangle+e^{2\pi i0.j_{n-1}j_{n-2}\ldots j_{0}}|1\rangle) \end{aligned} \end{equation} \]
所以QFT的张量积形式为:\(\frac{1}{\sqrt{2^{n}}}(|0\rangle+e^{2\pi i0.j_{0}}|1\rangle)\otimes(|0\rangle+e^{2\pi i0.j_{1}j_{0}}|1\rangle)\otimes\ldots\otimes(|0\rangle+e^{2\pi i0.j_{n-1}j_{n-2}\ldots j_{0}}|1\rangle)\)。
解释推导过程的两个问题:
- \(\otimes\)本质是一个连乘的符号,所以可以与\(\sum\)调换位置。
- 推导过程中,第五行到第六行。因为\(j\frac{1}{2^{l}}=j_{n-1}\ldots j_{l+1}.j_{l}\ldots j_{0}\),\(\exp(2\pi ij\frac{1}{2^{l}})=\exp(2\pi ij_{n-1}\ldots j_{l+1})*\exp(2\pi i0.j_{l}\ldots j_{0})\),即把\(j\)拆分为整数部分和小数部分,整数部分是1,所以可以省略,只有小数部分有效。
QFT的量子线路模型
假设一个量子门\(R_{k}=\begin{bmatrix}1&0\\0&\exp(\frac{2\pi i}{2^{k}})\end{bmatrix}\),显然\(R_{k}\)是一个酉变换。
首先,有\(e^{2\pi i0,j_{0}}=e^{\pi ij_{0}}=\left\{\begin{array}{ll}1&j_{0}=0\\-1&j_{0}=1\end{array} \right.\),所以\(|0\rangle+e^{2\pi i0,j_{0}}|1\rangle=\left\{\begin{array}{ll}|0\rangle+|1\rangle&j_{0}=0\\|0\rangle-|1\rangle&j_{0}=1\end{array} \right.\),所以用H门即可实现这个变换。
接下来,\(e^{2\pi i0.j_{x}\ldots j_{0}}=e^{2\pi i0.j_{x}}*e^{2\pi i0.0j_{x-1}\ldots j_{0}}\),可以看出,这一项只与前x个量子位有关。对于\(e^{2\pi i0.j_{x}}\),如前文所述,用H门可以实现,对于\(e^{2\pi i0.0j_{x-1}\ldots j_{0}}\),使用受控\(R_{k}\)门即可得到\(j_{k}\),所以整体线路模型如上图所示。
QFT量子线路的latex代码为:
\documentclass{article}
\usepackage[]{qcircuit}
\newcommand{\ket}[1]{\ensuremath{\left\vert #1 \right\rangle}}
\newcommand{\bra}[1]{\ensuremath{\left\langle{#1}\right\vert}}
\begin{document}
\Qcircuit@C=0.7em@R=0.7em {
\lstick{\ket{j_{n-1}}}&\gate{H}&\gate{R_{2}}&\qw&\cdots& &\gate{R_{n-1}}&\gate{R_n}&\qw &\qw&\qw &\qw&\qw &\qw &\qw&\qw &\qw&\qw &\qw &\qw &\rstick{\ket{0}+e^{2\pi i0.j_{n-1}\ldots j_{0}}\ket{1}}\qw \\
\lstick{\ket{j_{n-2}}}&\qw &\ctrl{-1} &\qw&\cdots& &\qw &\qw &\gate{H}&\qw&\cdots& &\gate{R_{n-2}}&\gate{R_{n-1}}&\qw&\qw &\qw&\qw &\qw &\qw &\rstick{\ket{0}+e^{2\pi i0.j_{n-2}\ldots j_{0}}\ket{1}}\qw \\
\lstick{\vdots} & & & &\ddots& & & & & &\ddots& & & & & & & & & &\rstick{\vdots} \\
\lstick{\ket{j_{1}}} &\qw &\qw &\qw&\qw &\qw&\ctrl{-3} &\qw &\qw &\qw&\qw &\qw&\ctrl{-2} &\qw &\qw&\cdots& &\gate{H}&\gate{R_{n-2}}&\qw &\rstick{\ket{0}+e^{2\pi i0.j_{1}j_{0}}\ket{1}}\qw \\
\lstick{\ket{j_{0}}} &\qw &\qw &\qw&\qw &\qw&\qw &\ctrl{-4} &\qw &\qw&\qw &\qw&\qw &\ctrl{-3} &\qw&\cdots& &\qw &\ctrl{-1} &\gate{H}&\rstick{\ket{0}+e^{2\pi i0.j_{0}}\ket{1}}\qw
}
\end{document}